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Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules
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Microtubules ~MTs!, which are the main components of the cytoskeleton, are important in a variety of
cellular activities, but some physical properties underlying the most important features of their behavior are
still lacking satisfactory explanation. One of the essential enigmas regarding the energy balance in MTs is the
hydrolysis of the exchangable guanosine 58-triphosphate bound to theb monomer of the molecule. The energy
released in the hydrolysis process amounts to 6.25310220 J and has been the subject of many attempts to
answer the questions of its utilization. Earlier, we put forward a hypothesis that this energy can cause a local
conformational distortion of the dimer. This distortion should have nonlinear character and could lead to the
formation of a traveling kink soliton. In this paper we use the formalism of the liquid crystal theory to consider
the nonlinear dynamics of MTs. We demonstrate that this new model is formally equivalent to our earlier
ferroelectric model which was widely exploited in an attempt to elucidate some important dynamical activities
in MTs. We also study the stability of kink solitons against small perturbations and their unusual mutual
interactions as well as the interactions with structural inhomogenities of MTs. Our new approach based on
liquid crystal properties of microtubules has been recently corroborated by new insights gained from the
electrostatic properties of tubulin and microtubules.

DOI: 10.1103/PhysRevE.67.011901 PACS number~s!: 87.14.Ee, 87.15.2v, 87.16.2b
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I. INTRODUCTION

Microtubules~MTs! are long and rigid tubular polymers
They assemble from tubulin, a protein found in eukaryo
cells, which ‘‘crystallizes’’ to form a helical lattice. Microtu
bules form an important part of the cellular scaffold a
provide a network of ‘‘rails’’ for active intracellular trans
port. They also play a crucial role during cell division, form
ing a dynamic structure that spatially separates duplica
chromosomes.

Eighteen years ago, Mitchison and Kirschner@1,2# dis-
covered that the polymerization of MTs from tubulin is
very interesting process in which an MT can repeatedly,
apparently at random, switch between persistent states o
sembly and disassembly in a constant concentration of tu
lin. This behavior is observed bothin vivo andin vitro and is
referred to as dynamical instability. This switching betwe
growing and shrinking states at one concentration is unu
for a polymer. The energy required to do this is provided
hydrolysis of guanosine triphosphate~GTP!, a nucleotide
bound to assembling monomers. A reasonable possib
proposed by Mitchison and Kirschner is that these transiti
occur as a consequence of competition between asse
and GTP hydrolysis. A growing MT assembles by the ad
tion of GTP tubulin, which is later converted to guanosi
diphosphate~GDP! tubulin. In that scenario, a growing MT
has a stabilizing cap of GTP bound tubulins at the ends
hydrolysis overtakes the addition of new GTP tubulins,
cap is gone and the MT end undergoes a change to
shrinking state, a so-called catastrophe. Conformatio
changes of tubulin or a structural change of the MT are ot
candidates for the explanation of dynamical instability@3#. In
this paper, we propose a mechanism that unifies both of
aforementioned mechanisms in a single plausible appro
The recently discovered role of MTs in the communicati
1063-651X/2003/67~1!/011901~11!/$20.00 67 0119
c

d

d
as-
u-

n
al
y

ty
s

bly
i-

If
e
he
al
r

he
h.

between the extracellular matrix and the cell nucleus@4,5#
provides additional motivation to study the biophysical pro
erties of these protein filaments.

Several groups of researchers have developed mode
energy trapping and propagation along a microtubu
protofilament. Chouet al. @6# showed that kinks and pulse
excited by the energy freed in the GTP hydrolysis can pro
gate along MTs due to elastic coupling between tubu
dimers. Another model of solitary wave formation was pr
posed by Sataric´ et al. @7#, and further developed by Trpisˇóva
and Tuszyn´ski @8#. The working assumption in that model
that tubulin dimers possess dipole moments which are sp
taneously ordered at physiological temperature. Con
quently, solitary waves carrying the free portion of hydrol
sis energy correspond to kink-type domain walls connect
two regions of the protofilaments with opposite electric p
larizations.

In this paper we approach the problem of internal degr
of freedom in microtubules from a different view point b
considering the microtuble in terms of a smectic ferroelec
liquid crystal system. Many components of living cells@9#
such as cell membranes, DNA in chromosomes, protein
muscles and in connective tissues~collagens! exhibit liquid
crystal properties. Microtubules may similarly fall into th
category of liquid crystals on at least two counts. First,
constituents of a nerve axon cell membrane are lipid m
ecules with chiral structure provided by lipid polar heads a
tails, similarly to the shape of a polar tubulin dimer, shown
Fig. 1. Moverover, these lipid molecules mostly consist ofa
helices andb sheets and their longest dimension is abo
4 nm which is comparable to tubulin. The second point
that Das and Schwarz@10# showed that cell membranes, e
pecially of the nerve axon, could be considered in the fram
work of the theory of liquid crystals. Axons’s symmetry
cylindrical and so is the symmetry of a microtubule.
©2003 The American Physical Society01-1
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This idea is further motivated by recent molecular dyna
ics simulations preformed by Tuszyn´ski and co-workers@11#.
These authors used the atomic resolution structure of tub
from the protein data bank@12#, and determined the elec
tronic charge and dipole moment of tubulin and hence of
MT. Each tubulin monomer is comprised of approximate
450 amino acids and has about 7000 atoms. Its structu
very compact but can be divided into three functional d
mains; an amino-terminal domain constituting the nucleot
binding region~binding GTP or GDP!, an intermediate do-
main containing the taxol-binding site, and a carbox
terminal domain~C terminus! ~see Fig. 1!. This tail of the
molecule has already been described biochemically by S
ett @13#. This chiral shape of the tubulin dimer, together w
its electronic charge distribution treating the MT crystal a
supersmectic ferroelectric phase is suitable for modeling
terms of nonlinear dynamics.

The paper is organized as follows. Section II briefly r
views the earlier approach based on ferroelectric feature
MTs leading to a nonlinear model giving rise to the existen
of topological kink excitations. Section III introduces the li
uid crystal framework based on the fact that the latest co
putational insights reveal that tubulin’s chirality and dipo
charge distribution fully justify such an approach. Section
presents solutions of the nonlinear equation of motion an
discussion of their stability while the details of the stabil
analysis are relegated to the Appendix. Section V discus
the possible relationship between kink dynamics and
namic instability in the context of the lateral cap model a
conformational chages of tubulin.

FIG. 1. A map of the electric charge distribution on the surfa
of a tubulin dimer withC-termini tails present. Figure prepare
usingMOLMOL @14#.
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II. AN OVERVIEW OF THE
FERROELECTRIC MODEL OF MTs

The idea that MTs are ferroelectric was established on
basis of experimental evidence revealing that MTs exh
pyroelectric and piezoelectric properties that arise as a re
of elementary dipole moments carried by their subu
dimers@15#.

Microtubules are hollow cylinders with a 25 nm outer a
a 15 nm inner diameter~see Fig. 2!. Each tubulin molecule is
composed of two highly homologous monomers calleda
tubulin andb tubulin. The length of each dimer is approx
mately 8 nm, the width 5 nm, and the thickness also 5 n
These dimers assemble themselves into protofilaments w
typically number 13 although cylinders with 14 or even mo
protofilaments are routinely detected in experiments donin
vitro. In the ferroelectric model proposed by Sataric´ et al.
@7#, the energy of an assembly of dipoles placed at disc
sites in a MT protofilament that consists ofN tubulin dimers
is represented by the following lattice Hamiltonian:

H5 (
n51

N F1

2
M S dun

dt D 2

1
1

2
K~un112un!2

2S a2

2
un

22
a4

4
un

4D2cunG . ~2.1!

e

FIG. 2. A schematic drawing of an MT that consists of 1
protofilaments. The tubulin dimers are arranged in a helical man
~following Trpišóva and Tuszyn´ski @8#!.
1-2
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In the equation above, the variableun represents the projec
tion on the protofilament axis of the elastic displacemen
the tubulin molecule corresponding to a different conform
tion. Describing the dynamics of the tubulin dimers in term
of only one of the variables~elastic degree of freedom! as-
sumes that the other internal variable, i.e., the dipole mom
behaves in the same way asun , in effect postulating that
both variables are strongly coupled. Terms in Eq.~2.1! have
the following interpretation:12 M (dun /dt)2 is the kinetic en-
ergy of the tubulin molecule of massM, 1

2 K(un112un)2

represents the elastic energy that originates from the re
ing elastic forces acting between two neighboring dime
The quartic double well potential energyV(un)
52(a2/2)un

21(a4/4)un
4 approximates the average effect

the surrounding dimers on the dimer at siten. The last term
: 2cun in Eq. ~2.1! accounts for the effect of an electric fie
to which the chain of dipoles in the protofilament can
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exposed either within the cell or applied externally. The n
electric field E at site n of the protofilament produces th
potential energyVE52cun52qe f fEun , whereqe f f is the
effective charge of thenth tubulin dimer.

Furthermore, cellular MTs are embedded in cytos
which is an electrolytic solution that interacts with the MT
both via electric forces and by providing a viscous mediu
which damps the displacements of tubulin dimers. This la
effect can be modeled by including a frictional force in t
equation of motion, wheregD is the damping coefficient

Fv5gD

]un

]t
. ~2.2!

The Hamiltonian, Eq.~2.1!, and the above force lead, in th
continuum approximation, to the following equation of m
tion for the displacement fieldu(x,t) of the dimer
M
]2u~x,t !

]t2
2K,0

2 ]2u~x,t !

]x2
2a2u~x,t !1a4u3~x,t !1gD

]u~x,t !

]t
2qe f f E~x!50. ~2.3!
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Here, ,05831029 m is the equilibrium distance betwee
the centers of mass of two neighboring tubulin dimers. T
molecular weight of each tubulin monomer is 55 kDa so
dimer mass isM51.83310222 kg. Note that inclusion of a
random force, as dictated by general fluctuation dissipa
arguments, has been attempted before@16#, and it had a ma-
jor effect on the kink’s motion that was interpreted as slo
ing down the average propagation velocity.

An analytic kink-type solution of the above equation
motion, Eq.~2.3!, was found in the form

u~t!5u21
u12u2

11expS u12u2

2
t D , ~2.4!

whereu1 andu2 are the real roots of the cubic polynomial
Eq. ~2.3!, and t5x2vt represents the coordinate movin
with the speedv ~the propagation speed of the kink!. As a
result of the rather crude estimates fora2 and a4 given in
Satarićet al. @7#, it was determined that for a sufficientl
small applied electric fieldE, the velocity of kink propaga-
tion v is proportional to the electric field strengthE and it
ranges from 1022 m/s for E'23105 V/m to 1024 m/s for
E5102 V/m. These numbers appear to be on the high sid
the known MT-associated processes~assembly and disassem
bly speeds or motor protein velocities!, but may be relevan
for coupled ionic waves or signaling modes that may acco
pany MT internal dynamics.

III. THE LIQUID CRYSTAL FRAMEWORK
FOR MT DYNAMICS

Recently, Sirenkoet al. @17# considered the MT as a thi
elastic cylinder and calculated the attendant elastic vibrat
e
e

n

-

of

-

s

whose maximum frequencies were found to be on the or
of 10 GHz. They calculated the sound velocity along M
and found it to be approximatelyv0'600 m/s. The approach
adopted does not depend on any specific features of the
stituent dimers since it is strictly within a continuum mode
This approach cannot provide answers regarding assem
and disassembly processes in MTs. We are convinced th
more fruitful approach is to incorporate the important intri
sic piezoelectric properties of MTs due to the presence
significant dipole moments of tubulin dimers already me
tioned in Sec. I.

We now embark on the new approach to model MT d
namics based on the theory of liquid crystals. Drawing
parallel with the commonly accepted model of the ner
axon membrane given by Singer and Nicolson@18#, we con-
sider an MT to be a two-dimensional smectic ferroelect
liquid crystal composed of protein dimers which are fold
into a cylinder with its characteristic dimensions depicted
Figs. 3 and 4. Very recently Thomaset al. @19# inferred ex-
perimentally that molecular chirality is expressed via chi
molecular packing in the tubule phase leading directly to
formation of helically arranged cylinders. A comprehensi
review of the effects of molecular chirality in the formatio
of complex macromolecular structures with characteris
length scales can be found in Selingeret al. @20#. Examples
of such structures involve the folding of lipid bilayers in
tubules not unlike those formed by tubulin. This fact can
used as an explanation of the dimer packing in the MT c
inders.

The detailed map of the electric charge distribution on
surface of the tubulin dimer presented in Ref.@11# is shown
in Fig. 1. It is clear that theC termini which extend outward
carry significant electric charge. At neutral pH, the negat
1-3
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charge on eachC terminus causes it to remain extended d
to the electrostatic repulsion within the tail. A further expe
mental argument of significance to the model is that
dimers in MTs are highly deformable and undergo large a
plitude conformational displacements. For example, wh
GTP hydrolysis occurs, the length of the tubulin dimer
reduced from 8.3 to 8.0 nm or by about 4%. This is
beyond thermal fluctuations and it requires the presenc
an essentially nonlinear dynamics for its explanation.

It is also apparent that due to the strong curvature of
MT cylinder, the inner parts of dimers are compressed wh
the outer ones are stretched by a remarkable amount of
sion ~see Fig. 4!. This situation provides the necessary co
ditions for a significant piezoelectric effect due to a redis
bution of excess negative charges thus enhancing
transverse polarization in addition to the existing longitu
nal one@7,8#. In Fig. 5 the usual ferroelectric liquid crysta
geometry is presented for clarification. The dimer’s direc
nW is tilted from the layer’s normal by an angleu. The result-
ant electric polarizationpW 5pW t1pW , is along the direction de
fined bynW 3 ̂ where ̂ is a unit vector along they axis ~see
Fig. 5!. The vectorcW shown in Fig. 5 represents thec director
which is the projection ofnW director laying in the smectic
x-y plane with the anglew with respect to thex axis. Intro-
ducing the piezoelectric coefficientmp we write the density
of polarization energy in the following form:

Wpol5
pt

2

2x t
1

p,
2

2x,
2Ep,2mpptu, ~3.1!

where the corresponding longitudinal and transversal die
tric susceptibilities are denoted asx, and x t , while the in-
trinsic electric fieldE @7,8# acts in the direction along the MT
cylinder. The fieldEW is assumed to be parallel to thex axis,
along the protofilament, so that the corresponding elec
interaction energy with the polarizationpW is EW •pW , , but for
small angles this can be approximated byEp, as in Eq.~3.1!.

FIG. 3. The characteristic dimensions of an MT cylinder and
dimensions of wedgelike dimers built into the cylinder.
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The phenomenological constantmp could be expressed in
terms of model parameters as:~a! the anisotropy of molecu-
lar polarizability,~b! the angle between the steric dipole ve
tor and the electric dipole of the same dimer which is t
measure of chirality,~c! the length and average diameter
the dimer, and~d! the number density of dimers in a cylinde

Following Carlssonet al. @21,22#, the cylindrical smectic
thin-layer elastic energy is expressed as follows:

Wlayer5
1

2r 2
~A12sin4w1A21cos4w22A11sin2w cos2w!,

~3.2!

with w being the azimuthal angle of projection of the direct
vector cW ~see Fig. 5!, while A12, A21, andA11, are elastic
coefficients. For clarification of the notation used in Fig.
please note that whenu50, pW , is parallel to thex axis andpt
to the z axis. WhennW is tilted at a small angleu, so is pW ,

e

FIG. 4. ~a! Free dimer with londitudinal dipole momentpW , .
~b! The dimensions of a deformed dimer and transverse dip
momentpW t .
1-4
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so that its projection on thex axis can be approximated b
ptsinu'ptu. The presence of the transverse componentpt is
related to the existance of a chargedC-termini feature in
tubulin ~see Fig. 5!. Due to larger values of this tilt angle, th
elastic coefficients can be expanded in powers of the
angleu,

FIG. 5. The ferroelectric smectic C* liquid crystal geometry.
-

a-

r i

01190
lt

A125K111L12u
21M12u

4,

A215K111L21u
21M21u

4, ~3.3!

A1152K111L11u
21M11u

4.

Here, K11 is the smectic C* splay elastic modulus. In th
above expansions only even powers ofu are included be-
cause the energy functional must not change its value u
the inversionu→2u. In view of Eq.~3.3! the elastic energy
Eq. ~3.2! now reads

Wlayer5
K11

2r
1

1

2r
$@~L121L11!sin4w1~L211L11!cos4w#u2

1@~M121M11!sin4w1~M211M11!cos4w#u4%.

~3.4!

Looking for the stable configuration regarding the anglew
we now minimize the layer energy with respect tow yielding
@~L121L11!sin2w2~L211L11!cos2w#

1@~M121M11!sin2w2~M211M11!cos4w#u250. ~3.5!
of
of

y

an

(

The form of energy in Eq.~3.4! implies that the stable con
figurationw0 of thec director will depend on the signs ofLi j
and Mi j ( i , j 51,2). Let us suppose that the following re
sonable conditions hold:

~L121L11!1~M121M11!u
2.0,

~3.6!

~L211L11!1~M211M11!u
2.0,

so that the stable anglew0 may be given by the following
expression:

w05tan21A~L211L11!1~M211M11!u
2

~L121L11!1~M121M11!u
2
. ~3.7!

Solving for sin2w and cos2w using the minimization condi-
tion, Eq.~3.4!, and replacing in the expression, Eq.~3.4!, for
layer elastic energy, retaining the terms up to fourth orde
u, we obtain the following expression:

Wlayer5
1

r 2
~Au21Bu4!, ~3.8!

where the new renormalized elastic coefficientsA andB arise
as follows:
n

A5
~L121L11!~L211L11!

~L111L121L21!
,

~3.9!

B5
~L121L11!~M211M11!1~L211L11!~M121M11!

~2L111L121L21!

2
~L121L11!~L211L11!~M121M211M11!

~2L111L121L21!
2

.

Eventually we should take into consideration the density
the splay elastic energy and the torsional kinetic energy
the dimer in MTs cylinder:

Wsp1Wkin5
K11

2 S ]u

]xD 2

1
I

2 S ]u

]t D
2

, ~3.10!

whereI stands for the dimer’s rotational inertia divided b
the volume of a single dimer~the specific rotational inertia!.
Taking into account the wedgelike shape of a dimer in
MT, we estimated I53.1310215 kg/m. Collecting the
terms, Eqs.~3.1!, ~3.8!, and ~3.10!, and summing over the
whole cylinder, we obtain the total free energy as followsd
is the thickness of the cylinder!:
1-5
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F52pE
R2d/2

R1d/2

r dr E
x1

x2
dxFK11

2 S ]u

]xD 2

1
K11

2r 2
1

A

2r 2
u2

1
B

2r 2
u41

I

2 S ]u

]t D
2

1
pt

2

2x t
1

p,
2

2x,
2Ep,2mpptuG .

~3.11!

If we ignore theu dependence onr due to the fact that the
cylinder contains only one layer of dimers, we can integr
Eq. ~3.11! with respect tor yielding

F5E
x1

x2
dxFpRK11S ]u

]xD 2

1pK11lnS 5

3D1FpA lnS 5

3D Gu2

1FpB lnS 5

3D Gu412pRdS pt
2

2x t
1

p,
2

2x,
2Ep,2mpptu D G .

~3.12!

We now rely on Fig. 6 for illustration and write down th
obvious trigonometric relations p,5p sing and pt
5p cosg. The angleg is considered to be a material co
stant at a given temperature and at a given pH of the solv
and its value could be determined experimentally by p
forming measurements of bothp, andpt . It is a measure of
the ratio between radial and longitudinal charge asymm
within dimers caused by the curvature of an MT and
effects due to the changes on theC termini.

The free energy, Eq.~3.12!, can now be minimized with
respect top, by finding (]F/]p)50. Consequently one ob
tains

p5@E sing1~mpcosg!u#L~g!, ~3.13!

where L(g) stands for the expression@(sin2g/x,)
1(cos2g/xt)#

21. We infer that even if the external electr
field is absent the resultant dipole electric moment of
dimer, Eq.~3.13!, varies linearly with the tilt angleu. Insert-
ing p from Eq. ~3.13! into Eq. ~3.12! the free energy now
reads

FIG. 6. The angleg as a measure of chirality. A crude represe
tation of a tubulin dimer is shown in gray.
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F5E
x1

x2
dxH pKbS ]u

]xD 2

1
RdI

2 S ]u

]t D
2

1
pKb

R
lnS 5

3D
1FpAd

R
lnS 5

3D Gu21S pBd

R
lnS 5

3D D u4J
2@pRdL~g!mpE sin~2g!#u2pRdL~g!E2sin2~g!,

~3.14!

whereKb5RK11. Here, we recognize the existence of a d
rect coupling of the external electric field to the mechani
deformationu through the term proportional toEu ~the term
before last!. This coupling is maximal wheng5(p/4).

If the dimers were nonchiral, i.e., for the piezoelect
transversal effect being zero, this term would have been z
and under such conditions there cannot be either soli
polarization waves or electrically induced propagation of
mechanical tilt field. Therefore, chirality induced by packin
deformations of dimers is of essential importance for
results in this model. We already mentioned discussing
~2.2! that the dimer’s dynamics in MTs must account for t
viscoelasticity so that the dynamical deformations a
damped and subjected to increasing elastic forces. This
tional force now can be written in the form

Fv52G
]u

]t
, ~3.15!

whereG5,0gD , ,0, andgD were introduced in Sec. I. We
are now able to develop an equation of motion for the
angleu using Eq.~3.14! and Eq.~3.15!. It simply reads

pKb

]2u

]x2
2pRdI

]2u

]t2
2G

]u

]t
2bu31au1 c̃50,

~3.16!

where we used the following abbreviations

b54 lnS 5

3D pBd

R
, ~3.17!

a52 lnS 5

3D pAd

R
22pRdL~g!mp

2cos2g, ~3.18!

and

c̃5pRdL~g!sin~2g!mpE5q̃e f fE, ~3.19!

where q̃e f f5pRdL(g)sin(2g)mp represents the effective
electric charge of a dimer in the context of the new mod
We draw the reader’s attention to the fact that the mathem
cal form of Eq.~3.16! coincides with Eq.~2.3! in the ferro-
electric model of MT dynamics, Ref.@7#. However, here the
anharmonic forceau2bu3 originates from the double wel
potential reflecting the interaction between a tilting dim
and the surrounding dimers through the elastic coupling
the piezoelectric effect. The above potential actually ste
from the expansion of the elastic energy coefficients t
includes larger values of the tilt angleu. It should be stressed
1-6
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RELATIONSHIP BETWEEN THE NONLINEAR . . . PHYSICAL REVIEW E 67, 011901 ~2003!
that polarization effects do not affect the nonlinear term g
erned by the parameterb. It is reasonable to expect that th
inequalityb.0 always holds. On the other hand, the para
etera exhibits a much richer dependence on both the ela
and polarization effects. Thus, the competition and interp
between the elastic and dielectric forces could even lead
change of sign of the parametera due to the change of tem
perature and/or or the strength of the applied electric fi
corresponding to the phase transition exhaustively discu
within the ferroelectric model in Trpisˇóva and Tuszyn´ski @8#.
The correlation lengthl5(pKb /a) increases when the elas
tic and polarizational forces approach a balance.

IV. SOLUTIONS OF THE EQUATIONS OF MOTION
AND THEIR STABILITY

We can now apply the procedure of finding solutions
this class of equations and then discuss the stability of
obtained solutions against small perturbations paying c
attention to some recently discovered peculiar behavio
such nonlinear modes. In the case of a constant applied e
tric field, Eq. ~3.16! can be solved analytically. In order t
find a solution in the form of a traveling wave that moves
a constant velocity, a dimensionless moving coordinatj
5 f (x2vt) is introduced as follows:

j5A a

pRdI~v0
22v2!

~x2vt !5k~x2vt !, ~4.1!

wherev0 stands for the sound velocity in MTs. Using scal
variablesh(j)5u0

21u(j) and u05Aa/b and the traveling
wave form of the solution, Eq.~4.1!, one obtains the ordinary
differential equation

d2h

dj2
1b

dh

dj
1h2h31«50, ~4.2!

where the coefficients are defined as

b5
GRv

ApRdI~v0
22v2!

; «5
c̃

a
Ab

a
. ~4.3!

The traveling kink wave solution of Eq.~4.2! was first pre-
sented in Ref.@23#, so we dispense with mathematical deta
giving only the final result,

h~j!5h21
h12h2

11expS h12h2

A2
j D , ~4.4!

where h15(2/A3)cos@ 1
3cos21(d)# and h25(2/A3)cos@2p/3

1 1
3 cos21(d)#, where
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d5
3A3

2
, «5

3A3pRdL~g!sin~2g!mpEA4pBd

R
lnS 5

3D
F4pAd

R
lnS 5

3D24pRdL~g!mp
2cosgG3/2 .

~4.5!

The maximum value of the intrinsic electric field expected
MTs is calculated in Ref.@8# and yields Emax52.62
3106 V/m. While not all the parameters contained in E
~4.5!, are even approximately known, we could make an
sumption that, similarly as in Ref.@7#, the conditiond!1
holds again. In that respecth12h2 is positive and the kink
tilt is arranged between the two statesh5h1 when j
→2` and h5h2 when j→1`, traveling to the right.
Since the argumentd is very small for every expected valu
of the electric field along an MT,h1, and h2 can be ex-
panded around zero up to only the first order ind, so the
kink has a greatly simplified expression

u~j!5Aa

bS 211
d

A27
1

2

11exp~A2j!
D . ~4.6!

Under the above set of conditions and using the expan
with respect tod we obtain the equation for the kink’s propa
gation velocity as follows:

v5
3v0

GRa
AIRbd

2
qe f fE. ~4.7!

This is the so-called terminal velocity for the given consta
field E. Equation~4.7! shows how the velocity of kinks de
pends on the model parameters. The impact of polariza
effects is included through the coefficientsa andqe f f , while
elasticity has a less pronounced effect as it only figures
Ab. The role of viscosity is, in accordance with our expe
tations, to damp the motion. It could be safely inferred tha
linear response of the kink velocity to the electric field c
play the role as an important control mechanism for a hos
cellular activities.

It is worth noting that the solution presented here w
initially developed as a mechanism for structural phase tr
sitions in crystals@24#. We conjecture that this mechanism
the kink drift could pertain to MTs in neural cells where the
are very stable and it is believed that they play an import
role in the organization and streamlining of the persist
flow of cellular components required for the leading ed
activity. It is reasonable to assume that the electric fi
driven by the nerve cell’s action potential affects MTs car
ing kinks along them in the direction of their propagation

In the Appendix, on the basis of kink stability analysis, w
prove that in the absence of electric fields kinks exhibit ra
dom motion due to the action of small perturbations. T
translational length of the kink’s random displacement
given by the expression

L5C2bv0A6pRdI

4a3
, ~4.8!
1-7
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where C2 is a constant. This means that the nonlinear
parameterb sustains the effect. Thus the random motion
kinks themselves or in combination with the drift motio
regulated by electric fields could lead to numerous collisio
between kinks presumably populated by the acts of ATP~ad-
enosine triphosphate! hydrolysis as argued in Refs.@7,8#.

Finally, we stress here that over the past decade m
attention was paid to the discrete Klein-Gordon system es
cially applied to the chains of biomolecules. Our Eq.~3.16!
pertains to the same class of equations if we takepKb(un
2un21)2 instead ofpKb(]u/]x)2 in the functional in Eq.
~3.14!. The numerical investigations performed by Dauxi
et al. @25#, Bang and Peyrard@26#, Forinashet al. @27#, Pey-
rard @28# unambiguously show that nonlinear excitations
such discrete systems exhibit some peculiar nonsoliton
features. Namely, while ‘‘pure’’ solitons in the event of m
tual scattering pass through each other without a chang
energy or shape, the discrete nonlinear excitations in mu
interactions coalesce so the larger excitations grow at
expense of smaller ones. This process saturates when
solitons that get narrower as they collect more energy, ar
narrow that they become trapped by discreteness of the
tice and are no longer able to move in the lattice.

Recently very precise experiments of Chretienet al. @29#,
Janosiet al. @30# revealed that microtubule cylinders ma
undergo remarkable bendings which indicates a size
stretching and compression of tubulin subunits along
protofilaments. Thus, we firmly believe that the formation
localized modes caused by ATP hydrolysis seems likely
occur, especially because biological molecules combine
possible sources of localization; nonlinearity and discre
ness. Such local modes could have a dramatic effect if th
anomalously large fluctuations~tilting rotation in the case of
MTs! are at the origin of chemical reactions. In the case
microtubules an effect of this type could easily cause
onset of a disassembly process.

V. CONCLUSION AND DISCUSSION

Starting from new convincing arguments in Ref.@11# re-
vealing the chirality and piezoelectric features of the tubu
molecule, as well as drawing a parallel with the geometry
the neuronal cell membrane@10#, we adopted the framewor
of the ferroelectric liquid crystal theory@21,22# to describe
nonlinear dynamics of MTs. We also relied here on the fin
ings of Caplowet al. @31# that much of the free energy o
GTP hydrolysis is coupled to the structural changes ass
ated with dimer-dimer interactions leading to MT assemb
Similarly, Mandelkow et al. @32# observed that within an
MT, a dimer that experiences hydrolysis of GTP is led to
energetically unfavorable~tense! large conformation which
tends to relax the corresponding filament towards a co
conformation. However, lateral bonds between filaments p
vent such an effect and instead, neighboring dimers are
tilted by the energy released. Within our model this cor
sponds to the formation of a deformation defect. Its d
motion superposed with diffusive motion pushes it prefer
tially towards the positive end of an MT since the intrins
electric field is directed from the plus to the minus end a
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the kink reorients the dipoles as it moves. Since the MT e
are exposed to the environment and less stablized by
terfilament bonds than the MT interior, relaxation into t
coiled configuration takes place most readily at the e
@29,30#. Therefore, the MT tips can be seen as the weak
points of the MT structure. It is not very likely, however, th
thermal fluctuations could cause massive depolymeriza
at MT ends.

We assume that kinks produced by GTP hydrolysis ins
the MT could reach the end and relax the tension throug
detachement of many dimers from the tip. This would
especially relevant if the MT end consisted of dimers alrea
burdened by tension due to GTP hydrolysis. The fact t
kinks spend some time traveling towards an MT end p
duces a certain delay in the activation of disassembly w
respect to the time of a kink’s excitation. This delay depen
on the kink’s velocity and the distance traveled. However
the considered MT end is protected by a so-called latteral
of at least 10–20 dimers loaded by unhydrolyzed GTP,
tip structure is robust enough that an incoming kink can
lead to a catastrophic event of rapid disassembly.

The following experimental obsevations can be cited
support of our hypothesis:

~a! If the tubulin is loaded with a nonhydrolyzable GT
analog instead of GTP, very stable MTs are polymeriz
@33#. There is no ‘‘fuel’’ for kink formation and there is no
enough tension to cause a dynamical instability.

~b! On the other hand, the addition of Ca21 ions in a
solution of tubulin GTP leads to an increase in the rate
hydrolysis of GTP in the lateral cap and inside MTs, produ
ing more kinks and increasing the rate of catastrophic dis
sembly events@34#.

~c! Dhamodharamet al. @35# have shown that when th
drug vinblastine is added to the caps of MTs in living cel
despite GTP hydrolysis along the MTs the diassembly
MTs is stopped since kinks may not destabilize the th
strengthened ends. This promotes vinblastine as an antitu
drug that suppresses mitotic spindle formation by arres
MT dynamics.

We now comment on the role on microtubule associa
proteins~MAPs! in the process of stabilizing MTs. A highe
stability of MTs in neurons can be explained by a high
content of MAPs in these cells. Particularly efficient in th
respect is thet ~tau! protein. Even at low concentration
(0.1–0.2 M),t protein dramatically reduces the catastrop
frequency of MTs. Ift is phosphorylated by MAP2 kinase
which decreases the affinity oft for MT binding tenfold, the
role of t protein in suppressing MT dynamics decreases p
portionally.

We conjecture that the attachment of MAPs to MTs
volves the generation of inhomogeneities in MTs via loc
potential deformations present along the path of a mov
kink. This was studied numerically by Trpisˇóva and Tuszyn´-
ski @8#, where it was shown that for large enough potent
wells, kink motion can be significantly slowed down o
stopped altogether. This would prevent kinks from reach
the MT ends and from releasing the energy stored in th
This is consistent with the fact that increasing the numbe
MAPs enhances the stability of MTs.
1-8
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The above discussion was intended to emphasize the p
tical importance of our analytical solution in Eq.~4.6! and
Eq. ~4.7! obtained within the continuum approximation
the model in Eq.~3.16!. Future investigations based on
discrete model similar to those presented in Ref.@28# should
reveal new features of kink dynamics and a better comp
son with experimental data.

Finally, we wish to mention the connection of our wo
with the findings of Maniotiset al. @5#. This team of cell
biologists has demonstrated that mammalian cells
densely ‘‘hard-wired’’ with force-carrying connections~MTs,
actin filaments, intermediate filaments! that reach all the way
from the membrane through the cytoskeleton to the
nucleus. We conjecture that mechanical stress coupled
piezoelectric changes in MTs causes strong local confor
tions of dimers producing kinks which carry mechanical te
sion to the cell nucleus. This puts the cytoskeleton in a n
light as a mechanism for signal transduction rather than
a mechanical scaffold. We expect that careful measurem
of the dynamic structure factor using neutron scattering
solutions of dynamically unstable MTs should demonstr
kink dynamics and we encourage experimentalists to pu
such measurements. In the past, kink contributions to
neutron scattering cross section were calculated in the
text of structural phase transitions@36#. Calculations of this
mechanism’s contribution to neutron scattering from mic
tubules are currently underway and should assist in fu
experiments.

ACKNOWLEDGMENTS

This research project was supported by grants fr
NSERC and MITACS-MMPD. Additional support was re
ceived from the Theoretical Physics Institute at the Univ
sity of Alberta. The authors gratefully acknowledge the
sistance of Mr. Eric Carpenter.

APPENDIX

If we start from the much studied case where Eq.~3.16! is
taken without the influence of viscosity and electric field
the remaining part of the equation reads

pRdI
]2u

]t2
2au1bu32pRKb

]2u

]x2
50. ~A1!

The most important solution of Eq.~A1! is the domain wall
excitation, which may be expressed as

uDW5u0tanh~j!, ~A2!

wherej is the same as in Eq.~4.1!. We now check whethe
the solution, Eq.~4.6!, of our nonlinear form, Eq.~3.16!, is
stable against small perturbations. To this end we assume
solution of the perturbed system, Eq.~3.16!, to be in the form

u~x,t !5uDW~x,t !1C~x,t !, ~A3!
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whereC(x,t)!uDW(x,t). In addition, we impose a condi
tion that at timet50, the domain wall is localized atx
50.

Thus the linearized equation of motion for the perturb
tion functionC(x,t) according to Eq.~3.16! yields

2pRdI
]2C

]t2
1G

]C

]t
12a@12 3

2 sech2~j!#C2pRKb

]2C

]x2

52 c̃. ~A4!

In order to solve this equation we first inspect a similar eq
tion that is well known from quantum mechanics,

F2pRdI
]2

]t2
12a@12 3

2 sech2~j!#2pRKb

]2

]x2Gg~x!50,

~A5!

separating the variables by the usual transformation,g(x)
5exp(ivt)•f(x), Eq. ~A5! gives

F2pRdIv212a@12 3
2 sech2~j!#2pRKb

]2

]x2G f ~x!50.

~A6!

This is a Schro¨dinger-type equation with a potential of th
form 2sech2(j). Figure 7 depicts the potential and th
eigenfunctions of its two bound states.

The complete set of solutions to Eq.~A6! is given as
follows:

g1~x!5A1sech2~kx!, v150, ~A7!

g2~x,t !5A2exp~ iv2t !
sinh~kx!

cosh2~kx!
, v253A a

4pRdI
,

~A8!

and the infinite set of continuum solutions given by

gs~x,t !5Asexp~ ivst !exp~ iskx!@3 tanh2~kx!2~11s2!

13is tanh~kx!#, ~A9!

FIG. 7. ~a! Plot of potential2 3
2 sech2(kx). ~b! Plot of bound

state g1(x)5A1sech2(kx). ~c! Plot of bound state g2(x)
5A2@sinh(kx)/cosh2(kx)#.
1-9
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where vs5(41s2)A(a/4pRdI), 2`<s<1`, and A1 ,
A2, and As stand for the corresponding normalization co
stants. Since the auxiliary system considered here, Eq.~A6!
possesses a complete set of eigenfunctions, Eqs.~A7!, ~A8!,
and~A9!, we can expand the functionC(x,t) that appears in
Eq. ~A4! with respect to this set as follows:

C~x,t !5T1~ t !g1~kx!1T2~ t !g2~kx!

1E
2`

1`

dsTs~ t !gs~x,t !. ~A10!

Substituting this expression into Eq.~A4! and using the or-
thogonality of the basis set we finally obtain

d2Tj

dt2
1S G

2pRdI
12iv j DdTj

dt
1 iv j S G

2pRdIDTj

52 c̃ exp~ iv j t !Aj f j~kx!, ~A11!

for j 51,2,3, . . . . Thegeneral solution of the homogeneo
part of the above differential equation reads

Tj~ t !5C1exp@2~ra1rb!t#1C2exp@2~ra2rb!t#,
~A12!

where

ra5 iv j1
1

2
•

G

2pRdI
, rb5

1

2
AS G

2pRdID 2

24v j .

~A13!

If ( G/2pRdI)2.4v j then both solutions in Eq.~A4! decay
exponentially with time.

Specifically, for the first bound state wherev150 the real
parts in Eq.~A13! cancel andT1(t) oscillates harmonically
with time. In this case the solution of the homogenous par
Eq. ~A12! is C15C2.

Returning to Eq.~A7! we obtain the corresponding pe
turbation functionC(x,t)5C2A1sech2(kx). Enforcing the
normalization condition,A1

2*2`
1`dxsech4(kx)51 and adding

the particular solution of the inhomogenous equation,~A11!,
ad

m

01190
-

f

Cp5
c̃Ajexp~ iv j t ! f j~kx!

3v j
222iv j S G

2pRdID , ~A14!

we express the perturbation function in the form

C~x,t !5C2bv0A6pRdI

4a3
•

duDW

dx

1
c̃Ajexp~ iv j t ! f j~kx!

3v j
222iv j S G

2pRdID , ~A15!

where we have used the identity (d/dx)tanhx5sech2x and
Eq. ~A2!. Thus, the function describing the tilt angleu in the
presence of a perturbation has the form

@u~x,t !# t→`5uDW1L
duDW

dx

5uDW~x1L !1
c̃Ajexp~ iv j t ! f j~kx!

3v j
222iv j S G

2pRdID ,

~A16!

where the translational length of the kink’s displacement
the value

L5C2bv0A6pRdI

4a3
. ~A17!

The second term in Eq.~A16! is always limited so that this
solution exhibits stability against external perturbations. T
reader is referred to Currieet al. @37# for additional insights
and initial presentation of the stability analysis presen
here.
d
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t,
ds
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@7# M.V. Satarić, J.A. Tuszyn´ski, and R.B. Z´akula, Phys. Rev. E

48, 589 ~1993!.
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